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Abstract— A key trade-off in airborne or spaceborne synthetic 
aperture radar (SAR) design involves the pulse repetition 
frequency (PRF) and the number and location of range and 
Doppler ambiguities.  The associated design issues are 
complicated further when the system involves a sparse array.  
A methodology is formulated based on selecting the PRF to 
avoid range ambiguities in the envelope mainbeam.  The effects 
of the Doppler ambiguities falling within the envelope 
mainbeam are mitigated by using an optimal algorithm to 
generate weights that place nulls in the pattern of the (sparse 
or contiguous) array in the directions of the Doppler 
ambiguities.  This approach can be used for the analysis and 
design of airborne or spaceborne SAR systems with contiguous 
or sparse arrays. 

I. INTRODUCTION 
A sparse array can arise in many contexts and can consist 

of many distinct configurations.  One example is a large, 
space-based, monolithic array divided into adjacent, 
contiguous sub-arrays, wherein only a subset of all the sub-
arrays is activated at a given time (either by design or due to 
element failures).  Another example is a spaceborne (or 
airborne) constellation of platforms wherein each platform 
has a small, contiguous array that acts as a sub-array of the 
overall constellation.  The methodology and algorithm 
presented herein for the suppression of Doppler ambiguities 
induced by the pulse repetition frequency (PRF) in a radar 
system can be extended to both of these, as well as to other 
cases.  However, the approach is formulated and analyzed 
for the case of a (nominally) linear array consisting of a 
constellation of satellite platforms, where each satellite 
carries a sub-array.  A set of complex-valued weights is 
determined optimally (based on a constrained power 
minimization criterion) to combine the outputs of the sub-
arrays and place nulls (notches) in the directions of the 
known ambiguities.  Timing and position errors limit the null 
depth and null placement capability, and both types of errors 
are included in simulation-based analyses of the Monte Carlo 
(MC) type.  Single-case results are shown for a typical 
sparse-array pattern for the conditions of off-nominal inter-

sub-array spacing with optimal weight application and 
without (i.e., using uniform weights).  Also, MC-type results 
are shown for two key synthetic aperture radar (SAR) 
performance criteria: ambiguity ratio (AMBR) and spurious 
response (SPR).  AMBR measures the energy detected by 
the sparse array in the directions of a specified number of 
PRF-induced Doppler ambiguities, normalized by the energy 
in the desired look direction.  In turn, SPR is the largest 
single contributor to AMBR.  Large AMBR reduces image 
contrast, whereas large SPR can produce spatially-aliased or 
ghost image artifacts. 

The approach presented can be extended to two- or three-
dimensional platform constellations.  It can be extended also 
to accomplish joint nulling of ambiguities and interference 
sources, provided sufficient degrees of freedom (number of 
sub-arrays and weights) are available. 

II. PROBLEM FORMULATION 
Consider a spaceborne (or an airborne) configuration of 

N platforms flying as a constellation in a linear formation at 
constant velocity vs aligned with the platforms, and with 
nominal uniform inter-platform spacing S (see Fig. 1).  Each 
platform carries a radar system with an antenna array sub-
system (sub-array) of width W.  The sub-arrays are combined 
to form a large sparse array (distributed aperture).  One 
characteristic of the array gain pattern of such a sparse array 
is the presence of grating lobes and nulls (or notches) at 

This work was carried out in support of the Space-based Multi-
Aperture Research and Technology (SMART) Program at AFRL/VSSS 
under the direction of Ms. Lynn M. Black, Program Manager. Figure 1.  Scenario and platform formation for linear sparse array. 



spatial (angular) directions that are determined by the radar 
system and antenna parameters.  In addition, for a known 
PRF and known platform motion, the angular directions of 
the ambiguities can be calculated.  For such a radar system 
operating in the SAR mode, the system designer is faced 
with a trade-off between PRF and the number and location of 
range and Doppler-induced ambiguities [1], [2].  To address 
this issue, one approach is to restrict the PRF to low values 
so that the range ambiguities are outside the envelope 
mainbeam, and select the specific (low) PRF value so that 
the Doppler-induced ambiguities that fall inside the envelope 
mainbeam are in the nulls.  However, in a realistic scenario, 
the platforms drift from their nominal relative locations, 
causing the array pattern to become distorted.  Such 
distortion includes changes in the locations of the pattern 
grating lobes and nulls.  Thus, a given Doppler ambiguity 
direction could fall on a grating lobe (or one of its sidelobes) 

rather than a null.  The solution posed herein is to select a 
low PRF to avoid range ambiguities in the envelope 
mainbeam (as in the first part of the approach stated above), 
and then to mitigate the effects of the Doppler ambiguities 
which fall within the envelope mainbeam (see Fig. 2).  This 
is accomplished by combining the inputs to the sub-arrays 
for transmission (and/or the outputs for reception) with 
weights {wSAi} to place nulls in the pattern of the sparse 
array at the directions corresponding to the Doppler 
ambiguities (see Fig. 3).  The placement of nulls to cancel 
signals from directions beyond the envelope mainbeam is 
accomplished via the appropriate selection of the sub-array 
weights, {wAn} (this case is not considered here). 

Fig. 4 defines the antenna array coordinate frame for the 
sparse array and key antenna parameters, with rii being the 
range from the ith sub-array to the center of the region of 
interest (ROI) (see also Fig. 1).  It can be shown that the 
Doppler ambiguities occur at the set of angles (for θ0y = 90°) 
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Also, λ0 is the nominal (center) wavelength, fPR is the PRF, vs 
is the platform speed, θ0x is the xa-axis cone pointing angle, 
fDC = 2vscos(θ0x)/λ0 is the Doppler frequency of the scene 
center clutter patch towards which the array is pointed, and 
mmin and mmax are integers specified to include all the 
Doppler ambiguity directions enclosed by the array envelope 
mainbeam.  For boresight-looking conditions, cos(θ0x) = 
cos(90°) = 1, fDC = 0, and –mmin = mmax = ME/2 since the 
ambiguity directions are symmetric about the boresight.  
Here ME denotes the total number of ambiguities inside the 

Figure 2.  PRF sampling grid and antenna beam pattern.

Figure 3.  Linear sparse array functional block diagram.



array envelope mainbeam.  In general, only a subset of all 
the ME intra-mainbeam ambiguities is to be nulled.  This is 
true, for example, when those ambiguities close to the first 
envelope null are attenuated sufficiently already.  To account 
for that condition, let M ≤ ME denote the number of intra-
mainbeam ambiguities to be nulled. 

The objective is to place a null in the array gain pattern 
G(θx,θy) at each of the M specified PRF-induced Doppler 
ambiguity directions using a set of linear weights (in place of 
the nominal uniform weights), while maintaining the general 
integrity of the rest of the pattern and specifically 
maintaining the beam gain in the required look direction.  
This objective is achieved by minimizing the power received 
from the specified directions and imposing an appropriate set 
of linear equality constraints on the weight vector.  These 
requirements lead to a constrained minimization problem 
which admits a closed-form analytic solution for the 
conditions specified.  Let ε denote an M-element column 
vector representing the signal received from the M specified 
ambiguity directions, 

 ε = HwSA (2) 

where wSA is the unknown N-element complex-valued 
column vector of sparse array weights, and H is an MxN 
complex-valued matrix representing the array model.  Matrix 
H includes the sub-array antenna characteristics (determined 
by the sub-array weights {wAn} shown in Fig. 3) and 
includes phase and position errors for the sparse array. 

Minimization of the received power in the M ambiguity 
directions is represented by a performance index J(wSA) of 
the form 
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Also, let L1(wSA) denote a linear equality constraint to force 
unity gain in the desired look direction, denoted as h0 
(assuming G(θ0x,θ0y) is normalized to unity): 
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H
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Furthermore, let L2(wSA) denote a power equality constraint 
on the weight vector of the form 

 ( ) 0oSA
H
SASA2 =−= ρwwwL  (5) 

where ρo is an unspecified real-valued scalar that represents 
the radius of a hypersphere in N-dimensional space.  This 
constraint leads to a solution that involves diagonal loading 
(or regularization), which allows inversion of an ill-
conditioned matrix, a case that can arise in this type of 
problem. 

III. PROBLEM SOLUTION 
The constrained optimization problem defined above is 

re-formulated by defining a Hamiltonian function as [3] 
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where µ1 and µ2 are Lagrange multipliers (unknown real-
valued scalars).  In a well-posed problem, all terms are real-
valued scalar functions of the complex-valued vector wSA.  
The values for wSA, µ1, and µ2 that minimize the 
unconstrained Hamiltonian also minimize the performance 
index (3) subject to the equality constraints (4) and (5).  The 
analytic solution to this formulation is obtained as [4] 
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In (7) the multiplier µ2 has been replaced by µ (without the 
subscript) in order to simplify notation.  Here µ remains as a 
parameter that is varied numerically in order to optimize the 
solution with respect to various considerations.  Parameter µ 
is referred to in the literature as the diagonal loading 
coefficient, and its most common use is to provide numerical 
stability to the matrix inversion in (7) when the matrix 
product HHH is rank-deficient.  Such a condition occurs in 
the context herein when M < N.  Equation (7) is obtained 
alternatively using a performance index that has an additive 
second term of the form µ ||wSA||2 and a single linear equality 
constraint L1(wSA).  This corresponds to treating the power 
term as a “soft” constraint. 

The approach presented can be extended to implement 
joint cancellation of ambiguities and interference sources 
within the envelope mainbeam by including the interference 
source directions in the formulation (2) via an enhanced 

Figure 4.  Antenna sub-array coordinates and parameter definitions.



vector ε.  In most realistic scenario conditions, the directions 
of the interference sources are unknown and have to be 
estimated.  This introduces into the weight expression a 
(spatial) covariance matrix for those sources, and such a 
matrix has to be estimated in an adaptive manner. 

IV. SIMULATION-BASED RESULTS 
A MATLAB-based simulation was generated to assess 

the performance of the algorithm in the presence of errors in 
the measurement of phase and position.  Sparse array gain 
patterns for several cases have been analyzed.  These 
include: (a) nominal case (linear uniform array with uniform 
weights); (b) distorted-pattern case (linear non-uniform array 
with uniform weights); and (c) null-steered case (linear non-
uniform array with optimal weights calculated to place nulls 
at the specified M ambiguity directions).  The weights are 
calculated for a linear array that includes non-uniform inter-
element spacing as well as measurement errors (as calculated 
by an on-board processor), and they are applied to the same 
linear non-uniform array but without the errors (also 
representing on-board operation).  AMBR and SPR as 
functions of position and/or phase errors have been 
determined.  The results shown are for a feasible set of 
system parameters in a space-based low Earth orbit (LEO) 
scenario, with key parameters listed in Table 1 and in the 
figures. 

Figs. 5 through 7 present a 1.5-degree extent of the 
nominal, distorted, and null-steered (for M = 4) one-way 
array radiation patterns, respectively.  The distorted pattern 
(Fig. 6) and the null-steered pattern (Fig. 7) were generated 
for a randomly-chosen realization of phase error with 
standard deviation (sd) of 9.0 deg, position offset error along 

the xa-axis direction with sd of 0.00075 m, and position 
offset along the xa-axis direction with sd of 2.0 m.  In all 
three figures the angular directions of the PRF-induced 
Doppler ambiguities are shown as green vertical lines.  
Notice that the distorted pattern is similar to the nominal 
pattern only for a few grating lobes close to the center.  The 
deviation from nominal at a given pattern direction increases 
as the non-uniformity increases (larger position offset sd).  
This behavior is typical for a distorted pattern.  Notice also 
that the selected PRF induces the third ambiguity (from the 
center) to fall on the envelope pattern null (dashed red 
curve), so only M = 4 nulls have to be placed for this design.   

In Fig. 7, notice that the null-steered pattern is 
asymmetric with respect to the pointing direction (center).  
This is the result of applying weights designed for an array 
with included measurement errors to an array without errors, 
which represents the condition of realistic on-board 
operation.  Another effect due to the presence of errors is that 
the depth of the desired nulls is typically between 5 and 25 
dB deeper than without nulling.  In contrast, for a system 
without errors the nulls are much deeper. 

AMBR and SPR can be measured over a set of 
ambiguities larger or smaller than the set of ambiguities 
inside the envelope pattern (ME), and also larger or smaller 
than the set of ambiguities to be nulled (M).  To account for 
that, let MA denote the number of ambiguities used for the 
calculation of AMBR and SPR.  For the specific cases shown 
in Figs. 6 and 7, the null-steered pattern one-way AMBR for 
the six ambiguities bounding the mainbeam (MA = 6) is 
−23.17 dB, a considerable improvement over the AMBR of 
the pattern without nulling, which is −12.18 dB.  For the 
same ambiguities, the null-steered pattern one-way SPR is 
−51.72 dB, in contrast to −32.94 dB without nulling. 

Fig. 8 shows a two-dimensional contour plot (top) of the 
null-steered two-way beam pattern projected onto the ground 
at scene center (the (0,0) point), along with a one-
dimensional slice (bottom) along the range line of scene 
center.  The Doppler ambiguity positions are shown by the 
red lines on the lower plot; the corresponding nulls appear as 
dark blue lines (at a slant angle due to off-boresight pointing) 
in the contour plot.  Fig. 9 is a closer view of the contour plot 
near the first Doppler ambiguity, which allows visualization 
of the lobe-like structure detail in the null ditch. 

Figs. 10 and 11 present AMBR and SPR, respectively, 
vs. phase and position offset errors for a MC analysis using 
10,000 statistically-independent trials.  In these results MA = 
6 also.  The median and the 95th percentile curves are shown 
for the distorted (black curves) and null-steered (red curves) 
cases.  In both figures, the abscissa represents a 
dimensionless parameter; thus phase and position errors vary 
jointly.  These types of plots can be used to establish system 
performance requirements.  A typical constraint for AMBR 
or SPR is shown in each respective figure.  The curves in 
Fig. 10 suggest, for example, that to achieve AMBR ≤ −20 
dB for 95% of the cases, phase error is restricted to have a sd 

Parameter Value 
Platform speed, vs 7,158.468 m/s 
Orbit altitude, hs 1,000.0 Km 
Squint angle 60.0 deg 
Grazing angle 24.0 deg 
Sub-array width, W 4.0 m 
Sub-array height, H 4.0 m 
Nominal inter-sub-array separation, S 40.0 m 
Lateral position offset bound, ∆S 5.0 m 
Sub-array weighting, {wAn} uniform 
No. of sub-array weights, NA 268 
Pulse repetition frequency (PRF), f

PR
 1,188.0 Hz 

Radiation wavelength, λ0 0.03 m 
No. of sparse array weights, N 10 
No. of ambiguities to be nulled, M 4 
No. of ambiguities within envelope mainbeam, ME 6 
No. of ambiguities for AMBR calculations, MA 6 
xa-axis pointing cone angle, θ0x 66.7425 deg 
ya-axis pointing cone angle, θ0y 127.84 deg 
No. of independent MC realizations 10,000 
Position offset standard deviation, σS 2.0 m 
Position offset error standard deviation, σx variable 
Phase error standard deviation, σ

φ
 variable 

TABLE I.  KEY SIMULATION PARAMETERS AND THEIR VALUES. 



of ~12.0 deg (which translates into a position error of λ/30), 
and position offset error is jointly restricted to having a sd of 
approximately λ/30.  Analogously, from Fig. 11 it can be 
deduced that in order to achieve an SPR ≤ −30 dB for 95% 
of the cases, the phase error must be restricted to a sd of ~9.4 
deg (which translates into a position error of λ/38), and 
position offset error must be jointly restricted to a sd of 
approximately λ/38. 

V. SUMMARY AND CONCLUSIONS 
An approach is presented for handling PRF-induced 

ambiguities in sparse array radar systems.  Specifically, a 
low PRF value is selected to avoid range ambiguities in the 
envelope mainbeam, and the effects of the Doppler 
ambiguities which fall within the envelope mainbeam are 
mitigated by combining the inputs to the sub-arrays with 
weights to place nulls in the pattern of the sparse array at the 
directions corresponding to those Doppler ambiguities.  An 
optimal (constrained power minimization) criterion is 
formulated and solved for the generation of the weights.  
Selected performance results demonstrate the applicability of 

the criterion for system analysis and design of SAR systems.  
The formulation and all results are presented in the context 
of uniform linear sparse arrays but can be extended to two- 
or three-dimensional sparse arrays. 

The approach presented can be used effectively for the 
analysis and design of airborne or spaceborne SAR systems 
that consist of contiguous or sparse array configurations.  In 
addition, it can be extended to the joint nulling of 
ambiguities and interference sources. 
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Figure 5. Nominal array gain pattern (1.5-degree extent). 

Figure 6. Distorted array gain pattern (1.5-degree extent). 



Figure 7. Null-steered array gain pattern (1.5-degree extent). 

Figure 8.  Two-way null-steered beam pattern showing Doppler ambiguity locations.  The upper plot is a contour plot looking down on the radar 
scene.  The lower plot is a slice along the range line of scene center (at 0 km). 

Figure 9.  Magnified contour plot of Figure 8. 



 
 
 

 
 
 
 

Figure 9.  Magnified contour plot of Figure 8. 

Figure 10.  AMBR vs. phase and position offset errors: Monte Carlo analysis results. 

Figure 11.  SPR vs. phase and position offset errors: Monte Carlo analysis results. 




